metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis(O,O'-diisopropyl dithiophosphato- $\kappa^2 S,S'$)(1,10-phenanthroline)nickel(II)

Erick Berdugo and Edward R. T. Tiekink*

Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA Correspondence e-mail: edward.tiekink@utsa.edu

Received 3 October 2007; accepted 4 October 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.006 Å; R factor = 0.057; wR factor = 0.118; data-to-parameter ratio = 18.7.

The Ni atom in the monomeric title compound, $[Ni(C_6H_{14}O_2PS_2)_2(C_{12}H_8N_2)]$, is within a distorted octahedral N_2S_4 geometry, defined by two chelating dithiophosphate ligands and a chelating 1,10-phenanthroline ligand.

Related literature

For related literature, see Berdugo & Tiekink (2006); Berdugo *et al.* (2006, 2007); Hoskins & Tiekink (1985); Lai *et al.* (2004). For related structures, see Shetty & Fernando (1970); Craig *et al.* (1971); Hao *et al.* (2001).

Experimental

Crystal data

$[Ni(C_6H_{14}O_2PS_2)_2(C_{12}H_8N_2)]$	b = 11.3618 (11) Å
$M_r = 665.44$	c = 18.582 (2) Å
Monoclinic, $P2_1/c$	$\beta = 96.829 \ (3)^{\circ}$
a = 14.4115 (17) Å	V = 3021.0 (6) Å ³

Z = 4Mo $K\alpha$ radiation $\mu = 1.06 \text{ mm}^{-1}$

Data collection

```
Rigaku AFC12\kappa/SATURN724
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
T_{min} = 0.787, T_{max} = 1
(expected range = 0.716–0.909)
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.118$ S = 1.176248 reflections T = 173 (2) K $0.12 \times 0.10 \times 0.09$ mm

30553 measured reflections 6248 independent reflections 5770 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.047$

334 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.67 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.39 \text{ e } \text{\AA}^{-3}$

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *PATTY* in *DIRDIF* (Beurskens *et al.*, 1992); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

The authors are grateful to the NIH/NIGMS MBRS–RISE program (grant No. GM60655) for support. Cheminova is also thanked for the gift of the dithiophosphate ligand used in this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2309).

References

Berdugo, E., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, m2693–m2694.

- Berdugo, E., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2007). Acta Cryst. E63, m764–m766.
- Berdugo, E. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m2218-m2220.
- Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). *The DIRDIF Program System.* Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- Craig, D. C., Pallister, E. T. & Stephenson, N. C. (1971). Acta Cryst. B27, 1163-1168.
- Hao, Q.-L., Fun, H.-K., Chantrapromma, S., Razak, I. A., Jian, F.-F., Yang, X.-J., Lu, L.-D. & Wang, X. (2001). Acta Cryst. C57, 717–718.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hoskins, B. F. & Tiekink, E. R. T. (1985). Acta Cryst. C41, 322-324.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lai, C. S., Liu, S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 221-226.
- Rigaku (2005). CrystalClear. Rigaku Americas Corporation, The Woodlands,
- Texas, USA.
- Sheldrick, G. M. (1997). *SHELXL97*. University of Göttingen, Germany. Shetty, P. S. & Fernando, Q. (1970). *J. Am. Chem. Soc.* **92**, 3964–3969.

Acta Cryst. (2007). E63, m2688 [doi:10.1107/S1600536807048659]

Bis(O,O'-diisopropyl dithiophosphato- $\kappa^2 S,S'$)(1,10-phenanthroline)nickel(II)

E. Berdugo and E. R. T. Tiekink

Comment

Nickel(II) dithiophosphates, Ni(S₂P(OR)₂)₂, are well known to form stable adducts with pyridine-type ligands (Berdugo & Tiekink, 2006; Berdugo *et al.*, 2006, 2007). In {Ni[S₂P(OⁱPr)₂]₂(1,10-phenanthroline)} (I), Fig. 1, the Ni atom exists within a N₂S₄ donor set defined by a two chelating dithiophosphate ligands and a chelating 1,10-phenanthroline ligand. The dithiophosphate ligands chelate in the symmetric mode with the Ni—S distances lying in the relatively narrow range of 2.4674 (11) to 2.5075 (11) Å. The Ni—N distances are equal within experimental error, *i.e.* 2.098 (3) and 2.100 (3) Å. The major distortions from the ideal octahedral geometry are related to the acute chelate angles that range from 79.75 (12)° for N1—Ni—N2 to 81.80 (4)° for S1—Ni—S2. The structure conforms closely to other structures of the general formula [Ni(S₂P(OR)₂)₂(1,10-phenanthroline)], *R* = Me (Shetty & Fernando, 1970), *R* = Et (Craig *et al.*, 1971) and *R* = *p*-tol (Hao *et al.*, 2001).

Experimental

The title compound was prepared by warming (338 K) the parent nickel dithiophosphate (Hoskins & Tiekink, 1985) with 1,10-phenanthroline (Acros Organics) following a literature procedure in CHCl₃ (40 ml) (Lai *et al.*, 2004). Green crystals were isolated by the slow evaporation (4 days) of a 1:7:2 methanol/ethanol/CHCl₃ solution of the compound; m.p. 569 K. IR (KBr disk): v(C—O) 1174, v(P—O) 956, v(P—S)_{asymm} 660, v(P—S)_{sym} 554 cm⁻¹.

Refinement

The C-bound H atoms were included in the riding-model approximation with C—H distances = 0.95 to 0.98 Å, and with U_{iso} (methyl-H) = 1.5 U_{eq} (methyl-C) and U_{iso} (H) = 1.2 U_{eq} (remaining-C).

Figures

Fig. 1. Molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 50% probability level.

Bis(O,O'-diisopropyl dithiophosphato- $\kappa^2 S,S'$)(1,10-phenanthroline)nickel(II)

 $F_{000} = 1392$

 $\lambda = 0.71070 \text{ Å}$

 $\theta = 2.3 - 30.4^{\circ}$

 $\mu = 1.06 \text{ mm}^{-1}$

T = 173 (2) K

Block, green

 $0.12 \times 0.10 \times 0.09 \text{ mm}$

 $D_{\rm x} = 1.463 {\rm Mg m}^{-3}$ Mo Kα radiation

Cell parameters from 11263 reflections

Crystal data

 $[Ni(C_6H_{14}O_2PS_2)_2(C_{12}H_8N_2)]$ $M_r = 665.44$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 14.4115 (17) Å *b* = 11.3618 (11) Å c = 18.582 (2) Å $\beta = 96.829 (3)^{\circ}$ V = 3021.0 (6) Å³ Z = 4

Data collection

Rigaku AFC12ĸ/SATURN724 diffractometer	6248 independent reflections
Radiation source: fine-focus sealed tube	5770 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
T = 173(2) K	$\theta_{\text{max}} = 26.5^{\circ}$
ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$h = -17 \rightarrow 18$
$T_{\min} = 0.787, \ T_{\max} = 1$	$k = -14 \rightarrow 14$
30553 measured reflections	<i>l</i> = −23→23

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.118$	$w = 1/[\sigma^2(F_o^2) + (0.0251P)^2 + 8.8715P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.17	$(\Delta/\sigma)_{\rm max} = 0.001$
6248 reflections	$\Delta \rho_{max} = 0.67 \text{ e } \text{\AA}^{-3}$
334 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Ni $0.23701 (3)$ $0.47852 (4)$ $0.80759 (3)$ $0.02291 (5)$ S1 $0.07915 (7)$ $0.39132 (9)$ $0.79641 (6)$ $0.0325 (2)$ S2 $0.26773 (7)$ $0.32161 (9)$ $0.90167 (5)$ $0.0279 (2)$ S3 $0.19746 (7)$ $0.63322 (8)$ $0.89438 (5)$ $0.0285 (2)$ S4 $0.39635 (7)$ $0.56769 (8)$ $0.83575 (5)$ $0.0277 (2)$ P1 $0.12922 (7)$ $0.30853 (9)$ $0.88634 (5)$ $0.0258 (2)$ P2 $0.32526 (7)$ $0.68842 (8)$ $0.88466 (5)$ $0.0255 (2)$ O1 $0.0927 (2)$ $0.1774 (2)$ $0.88923 (16)$ $0.0350 (7)$ O2 $0.08171 (18)$ $0.3637 (2)$ $0.95129 (14)$ $0.0308 (6)$ O3 $0.31619 (19)$ $0.8101 (2)$ $0.84164 (15)$ $0.0259 (6)$ O4 $0.38178 (19)$ $0.7324 (2)$ $0.95864 (15)$ $0.0239 (6)$ N1 $0.2881 (2)$ $0.3751 (3)$ $0.72725 (16)$ $0.0239 (6)$ N2 $0.2021 (2)$ $0.5858 (3)$ $0.71649 (16)$ $0.0469 (116)$ H1 $0.1964 (4)$ 0.0654 0.8772 $0.056*$	
S1 0.07915 (7) 0.39132 (9) 0.79641 (6) 0.0325 (2) S2 0.26773 (7) 0.32161 (9) 0.90167 (5) 0.0279 (2) S3 0.19746 (7) 0.63322 (8) 0.89438 (5) 0.0285 (2) S4 0.39635 (7) 0.56769 (8) 0.83575 (5) 0.0277 (2) P1 0.12922 (7) 0.30853 (9) 0.88634 (5) 0.0258 (2) P2 0.32526 (7) 0.68842 (8) 0.88466 (5) 0.0255 (2) O1 0.0927 (2) 0.1774 (2) 0.88923 (16) 0.0308 (6) O3 0.31619 (19) 0.8101 (2) 0.84164 (15) 0.0295 (6) O4 0.38178 (19) 0.7324 (2) 0.95864 (15) 0.0037 (6) N1 0.2881 (2) 0.3751 (3) 0.72725 (16) 0.0239 (6) N2 0.2021 (2) 0.5858 (3) 0.71649 (16) 0.0241 (6) C1 0.1298 (4) 0.0758 (4) 0.8559 (3) 0.0469 (11) H1 0.1964 0.0654 0.8772 0.056*	13)
S2 0.26773 (7) 0.32161 (9) 0.90167 (5) 0.0279 (2) S3 0.19746 (7) 0.63322 (8) 0.89438 (5) 0.0285 (2) S4 0.39635 (7) 0.56769 (8) 0.83575 (5) 0.0277 (2) P1 0.12922 (7) 0.30853 (9) 0.88634 (5) 0.0258 (2) P2 0.32526 (7) 0.68842 (8) 0.88466 (5) 0.0255 (2) O1 0.0927 (2) 0.1774 (2) 0.88923 (16) 0.0350 (7) O2 0.08171 (18) 0.3637 (2) 0.95129 (14) 0.0308 (6) O3 0.31619 (19) 0.8101 (2) 0.84164 (15) 0.0229 (6) N1 0.2881 (2) 0.3751 (3) 0.72725 (16) 0.0239 (6) N2 0.2021 (2) 0.5858 (3) 0.71649 (16) 0.0241 (6) C1 0.1298 (4) 0.0758 (4) 0.8559 (3) 0.0469 (12) H1 0.1964 (4) 0.0654 0.8772 0.056*)
S3 0.19746 (7) 0.63322 (8) 0.89438 (5) 0.0285 (2) S4 0.39635 (7) 0.56769 (8) 0.83575 (5) 0.0277 (2) P1 0.12922 (7) 0.30853 (9) 0.88634 (5) 0.0258 (2) P2 0.32526 (7) 0.68842 (8) 0.88466 (5) 0.0255 (2) O1 0.0927 (2) 0.1774 (2) 0.88923 (16) 0.0350 (7) O2 0.08171 (18) 0.3637 (2) 0.95129 (14) 0.0308 (6) O3 0.31619 (19) 0.8101 (2) 0.84164 (15) 0.0255 (6) O4 0.38178 (19) 0.7324 (2) 0.95864 (15) 0.0307 (6) N1 0.2881 (2) 0.3751 (3) 0.72725 (16) 0.0239 (6) N2 0.2021 (2) 0.5858 (3) 0.71649 (16) 0.0241 (6) C1 0.1298 (4) 0.0758 (4) 0.8559 (3) 0.0469 (11) H1 0.1964 (4) 0.0654 0.8772 0.056*)
S4 0.39635 (7) 0.56769 (8) 0.83575 (5) 0.0277 (2) P1 0.12922 (7) 0.30853 (9) 0.88634 (5) 0.0258 (2) P2 0.32526 (7) 0.68842 (8) 0.88666 (5) 0.0255 (2) O1 0.0927 (2) 0.1774 (2) 0.88923 (16) 0.0350 (7) O2 0.08171 (18) 0.3637 (2) 0.95129 (14) 0.0308 (6) O3 0.31619 (19) 0.8101 (2) 0.84164 (15) 0.0255 (6) O4 0.38178 (19) 0.7324 (2) 0.95864 (15) 0.0307 (6) N1 0.2881 (2) 0.3751 (3) 0.72725 (16) 0.0239 (6) N2 0.2021 (2) 0.5858 (3) 0.71649 (16) 0.0241 (6) C1 0.1298 (4) 0.0758 (4) 0.8559 (3) 0.0469 (11) H1 0.1964 0.0654 0.8772 0.056*)
P1 0.12922 (7) 0.30853 (9) 0.88634 (5) 0.0258 (2) P2 0.32526 (7) 0.68842 (8) 0.88466 (5) 0.0255 (2) O1 0.0927 (2) 0.1774 (2) 0.88923 (16) 0.0350 (7) O2 0.08171 (18) 0.3637 (2) 0.95129 (14) 0.0308 (6) O3 0.31619 (19) 0.8101 (2) 0.84164 (15) 0.0255 (6) O4 0.38178 (19) 0.7324 (2) 0.95864 (15) 0.0307 (6) N1 0.2881 (2) 0.3751 (3) 0.72725 (16) 0.0239 (6) N2 0.2021 (2) 0.5858 (3) 0.71649 (16) 0.0469 (12) H1 0.1964 0.0654 0.8772 0.056*)
P2 0.32526 (7) 0.68842 (8) 0.88466 (5) 0.0255 (2) O1 0.0927 (2) 0.1774 (2) 0.88923 (16) 0.0350 (7) O2 0.08171 (18) 0.3637 (2) 0.95129 (14) 0.0308 (6) O3 0.31619 (19) 0.8101 (2) 0.84164 (15) 0.0295 (6) O4 0.38178 (19) 0.7324 (2) 0.95864 (15) 0.0307 (6) N1 0.2881 (2) 0.3751 (3) 0.72725 (16) 0.0239 (6) N2 0.2021 (2) 0.5858 (3) 0.71649 (16) 0.0241 (6) C1 0.1298 (4) 0.0758 (4) 0.8559 (3) 0.0469 (11) H1 0.1964 0.0654 0.8772 0.056*)
O1 0.0927 (2) 0.1774 (2) 0.88923 (16) 0.0350 (7) O2 0.08171 (18) 0.3637 (2) 0.95129 (14) 0.0308 (6) O3 0.31619 (19) 0.8101 (2) 0.84164 (15) 0.0295 (6) O4 0.38178 (19) 0.7324 (2) 0.95864 (15) 0.0307 (6) N1 0.2881 (2) 0.3751 (3) 0.72725 (16) 0.0239 (6) N2 0.2021 (2) 0.5858 (3) 0.71649 (16) 0.0241 (6) C1 0.1298 (4) 0.0758 (4) 0.8559 (3) 0.0469 (11) H1 0.1964 0.0654 0.8772 0.056*)
O2 0.08171 (18) 0.3637 (2) 0.95129 (14) 0.0308 (6) O3 0.31619 (19) 0.8101 (2) 0.84164 (15) 0.0295 (6) O4 0.38178 (19) 0.7324 (2) 0.95864 (15) 0.0307 (6) N1 0.2881 (2) 0.3751 (3) 0.72725 (16) 0.0239 (6) N2 0.2021 (2) 0.5858 (3) 0.71649 (16) 0.0241 (6) C1 0.1298 (4) 0.0758 (4) 0.8559 (3) 0.0469 (11) H1 0.1964 0.0654 0.8772 0.056*)
O3 0.31619 (19) 0.8101 (2) 0.84164 (15) 0.0295 (6) O4 0.38178 (19) 0.7324 (2) 0.95864 (15) 0.0307 (6) N1 0.2881 (2) 0.3751 (3) 0.72725 (16) 0.0239 (6) N2 0.2021 (2) 0.5858 (3) 0.71649 (16) 0.0241 (6) C1 0.1298 (4) 0.0758 (4) 0.8559 (3) 0.0469 (11) H1 0.1964 0.0654 0.8772 0.056*)
O4 0.38178 (19) 0.7324 (2) 0.95864 (15) 0.0307 (6) N1 0.2881 (2) 0.3751 (3) 0.72725 (16) 0.0239 (6) N2 0.2021 (2) 0.5858 (3) 0.71649 (16) 0.0241 (6) C1 0.1298 (4) 0.0758 (4) 0.8559 (3) 0.0469 (11) H1 0.1964 0.0654 0.8772 0.056*)
N1 0.2881 (2) 0.3751 (3) 0.72725 (16) 0.0239 (6) N2 0.2021 (2) 0.5858 (3) 0.71649 (16) 0.0241 (6) C1 0.1298 (4) 0.0758 (4) 0.8559 (3) 0.0469 (12) H1 0.1964 0.0654 0.8772 0.056* C2 0.1269 (4) 0.0811 (5) 0.7756 (2) 0.0502 (11))
N2 0.2021 (2) 0.5858 (3) 0.71649 (16) 0.0241 (6) C1 0.1298 (4) 0.0758 (4) 0.8559 (3) 0.0469 (11) H1 0.1964 0.0654 0.8772 0.056* C2 0.1269 (4) 0.0811 (5) 0.7766 (2) 0.0502 (11))
C10.1298 (4)0.0758 (4)0.8559 (3)0.0469 (1.H10.19640.06540.87720.056*C20.1269 (4)0.0811 (5)0.7766 (2)0.0592 (1.)
H1 0.1964 0.0654 0.8772 $0.056*$ C2 $0.1269(4)$ $0.0811(5)$ $0.7756(2)$ $0.0592(1)$	2)
0.020000000000000000000000000000000000	
0.1207 (4) 0.0011 (5) 0.7700 (5) 0.0593 (1)	5)
H2A 0.1649 0.1474 0.7634 0.089*	
H2B 0.0621 0.0919 0.7548 0.089*	
H2C 0.1516 0.0077 0.7589 0.089*	
C3 0.0733 (4) -0.0264 (4) 0.8809 (3) 0.0594 (1	5)
H3A 0.0766 -0.0254 0.9338 0.089*	
H3B 0.0989 -0.1008 0.8652 0.089*	
H3C 0.0080 -0.0189 0.8596 0.089*	
C4 0.1173 (3) 0.3375 (4) 1.0269 (2) 0.0327 (9))
H4 0.1819 0.3048 1.0284 0.039*	
C5 0.1224 (4) 0.4531 (4) 1.0668 (3) 0.0509 (12)	2)
H5A 0.1632 0.5073 1.0442 0.076*	
H5B 0.1477 0.4402 1.1175 0.076*	
H5C 0.0596 0.4872 1.0647 0.076*	
C6 0.0566 (4) 0.2475 (5) 1.0577 (3) 0.0633 (14)	5)
H6A 0.0568 0.1746 1.0295 0.095*	
H6B -0.0074 0.2776 1.0554 0.095*	
H6C 0.0809 0.2316 1.1083 0.095*	

C7	0.4010 (3)	0.8641 (4)	0.8187 (2)	0.0336 (9)
H7	0.4556	0.8107	0.8317	0.040*
C8	0.3835 (4)	0.8768 (5)	0.7377 (3)	0.0561 (14)
H8A	0.3746	0.7988	0.7154	0.084*
H8B	0.4373	0.9155	0.7200	0.084*
H8C	0.3273	0.9245	0.7247	0.084*
С9	0.4175 (4)	0.9787 (4)	0.8586 (3)	0.0528 (13)
H9A	0.4308	0.9633	0.9107	0.079*
H9B	0.3616	1.0281	0.8495	0.079*
Н9С	0.4707	1.0194	0.8416	0.079*
C10	0.4348 (3)	0.6570 (4)	1.0117 (2)	0.0333 (9)
H10	0.4832	0.6141	0.9876	0.040*
C11	0.3739 (3)	0.5684 (4)	1.0438 (2)	0.0370 (10)
H11A	0.3453	0.5159	1.0056	0.056*
H11B	0.3248	0.6095	1.0661	0.056*
H11C	0.4120	0.5220	1.0808	0.056*
C12	0.4834 (3)	0.7399 (4)	1.0680 (2)	0.0414 (11)
H12A	0.5227	0.7949	1.0445	0.062*
H12B	0.5224	0.6943	1.1048	0.062*
H12C	0.4365	0.7840	1.0910	0.062*
C13	0.3303 (3)	0.2713 (3)	0.7337 (2)	0.0281 (8)
H13	0.3377	0.2342	0.7799	0.034*
C14	0.3642 (3)	0.2141 (4)	0.6759 (2)	0.0339 (9)
H14	0.3938	0.1396	0.6826	0.041*
C15	0.3541 (3)	0.2673 (4)	0.6086 (2)	0.0348 (9)
H15	0.3756	0.2287	0.5684	0.042*
C16	0.3124 (3)	0.3781 (4)	0.5999 (2)	0.0294 (8)
C17	0.3004 (3)	0.4407 (4)	0.5331 (2)	0.0364 (10)
H17	0.3221	0.4066	0.4914	0.044*
C18	0.2589 (3)	0.5477 (4)	0.5277 (2)	0.0368 (10)
H18	0.2539	0.5885	0.4828	0.044*
C19	0.2221 (3)	0.6008 (3)	0.5885 (2)	0.0289 (8)
C20	0.1742 (3)	0.7084 (4)	0.5857 (2)	0.0330 (9)
H20	0.1650	0.7516	0.5416	0.040*
C21	0.1407 (3)	0.7509 (4)	0.6463 (2)	0.0332 (9)
H21	0.1074	0.8232	0.6447	0.040*
C22	0.1561 (3)	0.6863 (3)	0.7115 (2)	0.0298 (8)
H22	0.1325	0.7163	0.7534	0.036*
C23	0.2340 (2)	0.5408 (3)	0.6556 (2)	0.0243 (8)
C24	0.2792 (3)	0.4293 (3)	0.6611 (2)	0.0247 (8)
	~ /	. /		

Atomic displacement parameters (A^2)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni	0.0266 (3)	0.0216 (2)	0.0211 (2)	0.00100 (18)	0.00519 (19)	0.00161 (18)
S1	0.0291 (5)	0.0380 (6)	0.0295 (5)	-0.0018 (4)	0.0000 (4)	0.0077 (4)
S2	0.0263 (5)	0.0313 (5)	0.0265 (5)	0.0023 (4)	0.0044 (4)	0.0068 (4)
S3	0.0307 (5)	0.0288 (5)	0.0274 (5)	0.0008 (4)	0.0091 (4)	-0.0011 (4)

S4	0.0278 (5)	0.0250 (5)	0.0312 (5)	-0.0001 (4)	0.0076 (4)	-0.0039 (4)
P1	0.0283 (5)	0.0246 (5)	0.0250 (5)	-0.0037 (4)	0.0047 (4)	0.0017 (4)
P2	0.0313 (5)	0.0224 (5)	0.0232 (5)	0.0003 (4)	0.0053 (4)	-0.0005 (4)
01	0.0437 (17)	0.0279 (15)	0.0349 (16)	-0.0065 (12)	0.0112 (13)	-0.0006 (12)
02	0.0291 (14)	0.0380 (16)	0.0260 (14)	0.0010 (12)	0.0059 (11)	0.0023 (12)
03	0.0329 (14)	0.0237 (13)	0.0326 (15)	0.0012 (11)	0.0073 (12)	0.0044 (11)
O4	0.0393 (15)	0.0249 (14)	0.0272 (14)	0.0010 (12)	0.0008 (12)	-0.0025 (11)
N1	0.0252 (15)	0.0241 (16)	0.0224 (16)	0.0006 (12)	0.0029 (12)	0.0001 (12)
N2	0.0251 (16)	0.0261 (16)	0.0213 (15)	0.0016 (13)	0.0039 (12)	0.0018 (13)
C1	0.063 (3)	0.032 (2)	0.048 (3)	-0.004 (2)	0.018 (2)	-0.006 (2)
C2	0.068 (4)	0.065 (4)	0.048 (3)	-0.025 (3)	0.018 (3)	-0.017 (3)
C3	0.092 (4)	0.036 (3)	0.051 (3)	-0.024 (3)	0.011 (3)	0.000 (2)
C4	0.034 (2)	0.038 (2)	0.027 (2)	0.0034 (18)	0.0068 (17)	0.0028 (17)
C5	0.067 (3)	0.046 (3)	0.039 (3)	-0.004 (2)	0.006 (2)	-0.007 (2)
C6	0.089 (4)	0.064 (4)	0.041 (3)	-0.023 (3)	0.026 (3)	0.004 (3)
C7	0.036 (2)	0.029 (2)	0.037 (2)	-0.0024 (17)	0.0099 (18)	0.0031 (18)
C8	0.067 (3)	0.064 (3)	0.039 (3)	-0.017 (3)	0.016 (3)	0.009 (2)
C9	0.062 (3)	0.036 (3)	0.063 (3)	-0.014 (2)	0.015 (3)	-0.009 (2)
C10	0.036 (2)	0.035 (2)	0.028 (2)	0.0071 (18)	0.0023 (17)	0.0012 (17)
C11	0.041 (2)	0.036 (2)	0.032 (2)	0.0004 (19)	-0.0039 (18)	0.0046 (18)
C12	0.037 (2)	0.052 (3)	0.034 (2)	-0.006 (2)	-0.0028 (19)	-0.006 (2)
C13	0.030 (2)	0.0223 (18)	0.031 (2)	0.0022 (15)	0.0009 (16)	-0.0008 (16)
C14	0.036 (2)	0.027 (2)	0.040 (2)	0.0017 (17)	0.0108 (19)	-0.0024 (18)
C15	0.038 (2)	0.034 (2)	0.034 (2)	-0.0048 (18)	0.0116 (18)	-0.0107 (18)
C16	0.029 (2)	0.034 (2)	0.027 (2)	-0.0064 (16)	0.0094 (16)	-0.0063 (17)
C17	0.045 (2)	0.042 (2)	0.024 (2)	-0.007 (2)	0.0113 (18)	-0.0049 (18)
C18	0.049 (3)	0.037 (2)	0.024 (2)	-0.011 (2)	0.0056 (18)	0.0033 (17)
C19	0.033 (2)	0.029 (2)	0.0244 (19)	-0.0080 (16)	0.0025 (16)	0.0002 (16)
C20	0.036 (2)	0.032 (2)	0.030 (2)	-0.0012 (17)	0.0005 (17)	0.0104 (17)
C21	0.034 (2)	0.027 (2)	0.038 (2)	0.0026 (16)	0.0012 (18)	0.0078 (17)
C22	0.032 (2)	0.027 (2)	0.032 (2)	0.0008 (16)	0.0068 (17)	0.0028 (16)
C23	0.0196 (17)	0.0293 (19)	0.0239 (19)	-0.0040 (14)	0.0018 (14)	0.0031 (15)
C24	0.0242 (18)	0.0262 (19)	0.0240 (19)	-0.0055 (15)	0.0039 (15)	-0.0022 (15)

Geometric parameters (Å, °)

Ni—S1	2.4674 (11)	С6—Н6С	0.9800
Ni—S2	2.4992 (11)	С7—С9	1.504 (6)
Ni—S3	2.4967 (11)	С7—С8	1.504 (6)
Ni—S4	2.5075 (11)	С7—Н7	1.0000
Ni—N2	2.098 (3)	C8—H8A	0.9800
Ni—N1	2.100 (3)	C8—H8B	0.9800
S1—P1	1.9777 (14)	C8—H8C	0.9800
S2—P1	1.9880 (14)	С9—Н9А	0.9800
S3—P2	1.9741 (14)	С9—Н9В	0.9800
S4—P2	1.9947 (14)	С9—Н9С	0.9800
P1—O2	1.586 (3)	C10—C11	1.505 (6)
P1	1.584 (3)	C10-C12	1.515 (6)
Р2—ОЗ	1.594 (3)	C10—H10	1.0000

P2—O4	1,593 (3)	C11—H11A	0.9800
O1—C1	1.442 (5)	С11—Н11В	0.9800
O2—C4	1.468 (5)	C11—H11C	0.9800
O3—C7	1.475 (5)	C12—H12A	0.9800
O4—C10	1.453 (5)	C12—H12B	0.9800
N1—C13	1.326 (5)	C12—H12C	0.9800
N1—C24	1.367 (5)	C13—C14	1.393 (6)
N2—C22	1.318 (5)	C13—H13	0.9500
N2—C23	1.369 (5)	C14—C15	1.380 (6)
C1—C2	1.470 (7)	C14—H14	0.9500
C1—C3	1.523 (7)	C15—C16	1.397 (6)
С1—Н1	1.0000	С15—Н15	0.9500
C2—H2A	0.9800	C16—C24	1.410 (5)
C2—H2B	0.9800	C16—C17	1.424 (6)
C2—H2C	0.9800	C17—C18	1.354 (6)
С3—НЗА	0.9800	С17—Н17	0.9500
C3—H3B	0 9800	C18—C19	1 437 (6)
C3—H3C	0.9800	C18—H18	0.9500
C4—C6	1 501 (6)	C19—C20	1 402 (6)
C4—C5	1 507 (6)	C19—C23	1.413 (5)
C4—H4	1 0000	C20—C21	1 366 (6)
С5—Н5А	0.9800	С20—Н20	0.9500
C5—H5B	0.9800	C21—C22	1 412 (6)
C5—H5C	0.9800	C21—H21	0.9500
С6—Н6А	0.9800	C22—H22	0.9500
С6—Н6В	0.9800	C23—C24	1.423 (5)
N2NiN1	79 75 (12)	Н6А_С6_Н6С	109.5
N2NiS1	92 01 (9)	H6B-C6-H6C	109.5
N1_Ni_S1	96.48 (9)	03 - 07 - 09	107.8 (4)
N2_Ni_S3	93 50 (9)	03 - 07 - 08	107.0(4) 106.5(4)
N1_Ni_S3	168 26 (9)	C_{2}^{-}	100.3 (4) 114 1 (4)
S1_Nj_S3	93 33 (4)	C)C7H7	100 5
N2_Ni_S2	160.83 (0)	C9-C7-H7	109.5
N1 Ni S2	109.85(9)	C^{8} C^{7} H^{7}	109.5
NI - NI - S2	92.88(9)	C_{3} C_{7} C_{8} H_{8}	109.5
\$1_Ni_\$2 \$3_Ni_\$2	91.00(4)	C7_C8_H8B	109.5
N2_Ni_S4	93 /1 (9)		109.5
N1NiS4	99.41 (9) 89.14 (9)	C7 - C8 - H8C	109.5
S1 N; S4	172.81(A)		109.5
$S_1 = N_1 = S_4$ $S_2 = N_1 = S_4$	1/2.81 (4) 81 63 (3)		109.5
\$2Ni\$4	93 48 (4)	C7_C9_H9A	109.5
92—NI—94 P1—S1—Ni	93.48 (4) 83.09 (5)	C7 - C9 - H9B	109.5
P1Ni	82.06 (4)	H_{0}	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82.06 (4)	10 A = 0 $10 B$	109.5
P2S4Ni	82.28 (5)		109.5
02 - P1 - 01	99.81 (15)	H9B_C9_H9C	109.5
02 - P1 - S1	107.94 (12)	04-010-011	112 3 (3)
01_P1_\$1	107.77(12) 112 75 (12)	04 - C10 - C12	105 2 (2)
$O_1 - f_1 - S_1$	112.73(12) 112.24(12)	$C_{11} = C_{10} = C_{12}$	103.3(3) 112.7(4)
			11//141

O1—P1—S2	113.45 (12)	O4C10H10	108.8
S1—P1—S2	110.16 (6)	C11—C10—H10	108.8
O3—P2—O4	99.43 (15)	С12—С10—Н10	108.8
O3—P2—S3	107.43 (11)	C10-C11-H11A	109.5
O4—P2—S3	114.06 (12)	C10-C11-H11B	109.5
O3—P2—S4	112.56 (11)	H11A—C11—H11B	109.5
O4—P2—S4	111.79 (12)	C10-C11-H11C	109.5
S3—P2—S4	111.01 (6)	H11A—C11—H11C	109.5
C1—O1—P1	126.6 (3)	H11B—C11—H11C	109.5
C4—O2—P1	121.0 (2)	C10-C12-H12A	109.5
C7—O3—P2	119.0 (2)	C10-C12-H12B	109.5
C10—O4—P2	125.1 (2)	H12A—C12—H12B	109.5
C13—N1—C24	118.3 (3)	C10-C12-H12C	109.5
C13—N1—Ni	129.0 (3)	H12A—C12—H12C	109.5
C24—N1—Ni	112.6 (2)	H12B-C12-H12C	109.5
C22—N2—C23	118.7 (3)	N1—C13—C14	123.0 (4)
C22—N2—Ni	129.0 (3)	N1—C13—H13	118.5
C23—N2—Ni	112.2 (2)	C14—C13—H13	118.5
O1—C1—C2	115.4 (4)	C15—C14—C13	119.1 (4)
O1—C1—C3	103.9 (4)	C15-C14-H14	120.5
C2—C1—C3	112.6 (4)	C13—C14—H14	120.5
O1—C1—H1	108.2	C14—C15—C16	119.8 (4)
C2-C1-H1	108.2	C14—C15—H15	120.1
С3—С1—Н1	108.2	С16—С15—Н15	120.1
C1—C2—H2A	109.5	C15—C16—C24	117.5 (4)
C1—C2—H2B	109.5	C15—C16—C17	123.8 (4)
H2A—C2—H2B	109.5	C24—C16—C17	118.7 (4)
C1—C2—H2C	109.5	C18—C17—C16	121.3 (4)
H2A—C2—H2C	109.5	C18—C17—H17	119.4
H2B—C2—H2C	109.5	С16—С17—Н17	119.4
С1—С3—НЗА	109.5	C17—C18—C19	121.3 (4)
С1—С3—Н3В	109.5	C17—C18—H18	119.3
НЗА—СЗ—НЗВ	109.5	C19—C18—H18	119.3
С1—С3—Н3С	109.5	C20—C19—C23	117.5 (4)
НЗА—СЗ—НЗС	109.5	C20—C19—C18	124.2 (4)
НЗВ—СЗ—НЗС	109.5	C23—C19—C18	118.3 (4)
O2—C4—C6	110.5 (4)	C21—C20—C19	119.8 (4)
O2—C4—C5	106.6 (3)	C21—C20—H20	120.1
C6—C4—C5	113.8 (4)	C19—C20—H20	120.1
O2—C4—H4	108.6	C20—C21—C22	119.3 (4)
C6—C4—H4	108.6	C20—C21—H21	120.3
C5—C4—H4	108.6	C22—C21—H21	120.3
C4—C5—H5A	109.5	N2—C22—C21	122.5 (4)
C4—C5—H5B	109.5	N2—C22—H22	118.8
H5A—C5—H5B	109.5	C21—C22—H22	118.8
C4—C5—H5C	109.5	N2—C23—C19	122.1 (3)
H5A—C5—H5C	109.5	N2—C23—C24	118.0 (3)
H5B—C5—H5C	109.5	C19—C23—C24	119.9 (3)
С4—С6—Н6А	109.5	N1—C24—C16	122.3 (3)

С4—С6—Н6В	109.5	N1—C24—C23	117.3 (3)
Н6А—С6—Н6В	109.5	C16—C24—C23	120.4 (3)
С4—С6—Н6С	109.5		
N2—Ni—S1—P1	-176.93 (9)	S3—Ni—N2—C22	-13.2 (3)
N1—Ni—S1—P1	103.16 (9)	S2—Ni—N2—C22	132.5 (4)
S3—Ni—S1—P1	-83.31 (5)	S4—Ni—N2—C22	-95.0 (3)
S2—Ni—S1—P1	11.17 (5)	N1—Ni—N2—C23	-4.0(2)
N2—Ni—S2—P1	-64.1 (5)	S1—Ni—N2—C23	-100.2(2)
N1—Ni—S2—P1	-107.28 (9)	S3—Ni—N2—C23	166.3 (2)
S1—Ni—S2—P1	-11.14 (5)	S2—Ni—N2—C23	-48.0 (6)
S3—Ni—S2—P1	81.52 (5)	S4—Ni—N2—C23	84.5 (2)
S4—Ni—S2—P1	163.41 (5)	P1	-60.3 (6)
N2—Ni—S3—P2	-83.39 (9)	P1	175.9 (3)
N1—Ni—S3—P2	-29.0 (4)	P1	-101.8 (4)
S1—Ni—S3—P2	-175.61 (5)	P1	134.1 (3)
S2—Ni—S3—P2	102.35 (5)	P2—O3—C7—C9	-115.4 (4)
S4—Ni—S3—P2	9.55 (4)	P2—O3—C7—C8	121.8 (3)
N2—Ni—S4—P2	83.57 (9)	P2	-62.7 (4)
N1—Ni—S4—P2	163.25 (9)	P2	174.4 (3)
S3—Ni—S4—P2	-9 46 (4)	$C_{24} = N_{1} = C_{13} = C_{14}$	-14(6)
S2—Ni—S4—P2	-103.91(5)	Ni-N1-C13-C14	-1774(3)
Ni = S1 = P1 = O2	107.99 (12)	N1-C13-C14-C15	03(6)
Ni = S1 = P1 = O1	-14274(13)	C_{13} C_{14} C_{15} C_{16}	15(6)
Ni S1 P1 S1	-14.89(6)	C14-C15-C16-C24	-21(6)
Ni $=$ S2 $=$ P1 $=$ O2	-10558(12)	C_{14} C_{15} C_{16} C_{17}	1789(4)
Ni = S2 = P1 = O1	$142\ 20\ (13)$	C_{15} C_{16} C_{17} C_{18}	179.6 (4)
Ni $S2$ P1 $S1$	14 73 (6)	C_{24} C_{16} C_{17} C_{18}	0.5 (6)
NiS3P2O3	110.69(12)	C_{16} C_{17} C_{18} C_{19}	-22(6)
NiS3P204	-140.14(12)	C_{17} C_{18} C_{19} C_{20}	-1767(4)
Ni_S3_P2_S4	-12.77(6)	$C_{17} = C_{18} = C_{19} = C_{23}$	28(6)
NiS4P2O3	-107.73(12)	$C_{17}^{23} - C_{19}^{19} - C_{20}^{20} - C_{21}^{21}$	-0.3(6)
NiS4P204	107.75(12) 141 33 (12)	$C_{23} = C_{13} = C_{20} = C_{21}$	1791(4)
Ni	12 73 (6)	$C_{10} = C_{20} = C_{21} = C_{22}$	0.9(6)
Ω_{2}^{2} P1 Ω_{1}^{2} C1	-163.2(A)	$C_{12} = C_{22} = C_{21} = C_{22}$	-1.8(6)
S1P101C1	82 5 (4)	$N_{1} = N_{2} = C_{22} = C_{21}$	1.0(0) 177.7(3)
S2_P1_01_C1	-43.6(4)	C_{20} C_{21} C_{22} C_{21} C_{20} C_{21} C_{22} N_{2}	177.7(3)
$1 - P_1 - O_2 - C_4$	45.0 (4) 74.1 (3)	$C_{20} = C_{21} = C_{22} = N_2$	0.2(0)
S1O2C4	-1680(3)	$N_{1} = N_{2} = C_{23} = C_{13}$	-1772(3)
$S_1 = 1 = 02 = 04$	-46.4(2)	$N_{1} = N_{2} = C_{23} = C_{13}$	-176.8(3)
32 - F 1 - 02 - C4	-40.4(3)	$V_{22} - V_{23} - V_{24}$	-170.8(3)
$S_{4} = F_{2} = O_{3} = C_{7}$	-1725(2)	$N_1 - N_2 - C_{23} - C_{24}$	-1.2(5)
S3-F2-03-C7	-172.3(2) -50.0(2)	$C_{20} - C_{19} - C_{23} - N_2$	-1.5(3)
$34 - r_2 - 03 - C_7$	-30.0(3)	$C_{10} = C_{10} = C_{23} = C_{24}$	179.2(3)
$r_{2} = r_{2} = 04 - c_{10}$	-100.8(3)	$C_{20} - C_{19} - C_{23} - C_{24}$	177.0(3)
$S_{3} = P_{2} = O_{4} = C_{10}$	65.2 (5) 41.8 (2)	C18 - C19 - C23 - C24	-1.7(3)
$54-r_2-04-010$	-41.8(3)	$V_{13} - N_1 - V_2 - V_{10}$	0.7(3)
N2 - N1 - N1 - C13	-100.0(3)	1NI - INI - C24 - C10	1/7.3(3)
S_1 N_1 N_1 C_{12}	-69.1(5)	$V_{13} = N_1 = V_2 4 = V_2 3$	-1/9.8(3)
53-NI-NI-C13	124.4 (4)	NI - NI - U24 - U23	-5.1 (4)
82—N1—N1—C13	-/.0(3)	C15—C16—C24—N1	1.0 (5)

S4-Ni-N1-C13	86.4 (3)	C17—C16—C24—N1	-179.9 (4)
N2-Ni-N1-C24	3.8 (2)	C15—C16—C24—C23	-178.5 (3)
S1-Ni-N1-C24	94.7 (2)	C17—C16—C24—C23	0.6 (5)
S3—Ni—N1—C24	-51.7 (6)	N2-C23-C24-N1	-0.3 (5)
S2—Ni—N1—C24	176.8 (2)	C19—C23—C24—N1	-179.5 (3)
S4—Ni—N1—C24	-89.8 (2)	N2-C23-C24-C16	179.2 (3)
N1—Ni—N2—C22	176.5 (3)	C19—C23—C24—C16	0.1 (5)
S1—Ni—N2—C22	80.3 (3)		

